Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651597

RESUMO

Despite its potential significance, "cluster chemistry" remains a somewhat marginalized topic within the chemistry field. However, atomic clusters with their unusual and unique structures and properties represent a novel material group situated between molecules and nanoparticles or solid matter, judging from both scientific standpoints and historical backgrounds. Surveying an entire material group, including all substances that can be regarded as a cluster, is essential for establishing cluster chemistry as a more prominent chemistry field. This review aims to provide a comprehensive understanding by categorizing, summarizing, and reviewing clusters, focusing on their constituent elements in the periodic table. However, because numerous disparate synthetic processes have been individually developed to date, their straightforward and uniform classification is a challenging task. As such, comprehensively reviewing this field from a chemical composition viewpoint presents significant obstacles. It should be therefore noted that despite adopting a synthetic method-based classification in this review, the discussions presented herein could entail inaccuracies. Nevertheless, this unorthodox viewpoint unfolds a new scientific perspective which accentuates the common ground between different development processes by emphasizing the lack of a definitive border between their synthetic methods and material groups, thus opening new avenues for cementing cluster chemistry as an attractive chemistry field.

2.
Chemistry ; 30(20): e202400060, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38263351

RESUMO

Superatoms are promising as new building block materials that can be designed by precise controlling of the constituent atoms. Stannaspherene (Sn12 2-) is a rigid cage-like cluster with icosahedral symmetry, for which one-atom encapsulation was theoretically expected and detected in the gas phase. Here, a single-atom introduction method into stannaspherene using a dendrimer template with polyvinylpyrrolidone (PVP) protection is demonstrated. This advanced solution-phase synthesis allows not only the selective doping of one atom into the cluster cage, but also enable further detail characterization of optical and magnetic properties that were not possible in the gas-phase synthesis. In other words, this liquid-phase synthesis method has enabled the adaptation of detailed analytical methods. In this study, FeSn12 was synthesized and characterized, revealing that a single Fe atom introduction in the Sn12 2- cage result in the appearance of near-infrared emission and enhancement in the magnetism.

3.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684336

RESUMO

Superatoms are promising materials for their potential in elemental substitution and as new building blocks. Thus far, various synthesis methods of thiol-protected Au clusters including an Au25 superatom have been investigated. However, previously reported methods were mainly depending on the thermodynamic stability of the aimed clusters. In this report, a synthesis method for thiol-protected Au clusters using a dendrimers template is proposed. In this method, the number of Au atoms was controlled by the stepwise complexation feature of a phenylazomethine dendrimer. Therefore, synthesis speed was increased compared with the case without the dendrimer template. Hybridization for the Au25 superatoms was also achieved using the complexation control of metals.

4.
Chem Sci ; 13(20): 5813-5817, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35685784

RESUMO

Synthesizing metal clusters with a specific number of atoms on a preparative scale for studying advanced properties is still a challenge. The dendrimer templated method is powerful for synthesizing size or atomicity controlled nanoparticles. However, not all atomicity is accessible with conventional dendrimers. A new tailor-made phenylazomethine dendrimer (DPA) with a limited number of coordination sites (n = 16) and a non-coordinating large poly-phenylene shell was designed to tackle this problem. The asymmetric dendron and adamantane core four substituted dendrimer (PPDPA16) were successfully synthesized. The coordination behavior confirmed the accumulation of 16 metal Lewis acids (RhCl3, RuCl3, and SnBr2) to PPDPA16. After the reduction of the complex, low valent metal nanoparticles with controlled size were obtained. The tailor-made dendrimer is a promising approach to synthesize a variety of metal clusters with desired atomicity.

5.
Angew Chem Int Ed Engl ; 61(8): e202114353, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35014142

RESUMO

Quasi-sub-nanomaterials (1-3 nm) have been predicted to exhibit unique properties originating from the gray structures considered both bulk solids and molecules, while their synthesis is extremely difficult. The present study describes a new template synthesis method for quasi-sub-nanosized materials using a combination of coordination chemistry and polymer chemistry. Utilizing self-assembly of guest basic phenylazomethine dendron units onto host acidic core units with six tritylium cations, the dendron-assembled supramolecules were constructed easily and quantitatively without costly techniques. This huge supramolecular capsule accumulating multiple acidic rhodium salts in its basic ligands enabled a precise synthesis of rhodium particles via formation of multinuclear complexes. The obtained particles (Rh84 , ≈1.5 nm) have particle sizes within 1-3 nm range and were larger than conventional sub-nanoparticles (Rh14 , ≈0.85 nm), therefore the precise template synthesis of quasi-sub-nanoparticles was successfully demonstrated.

6.
Acc Chem Res ; 54(24): 4486-4497, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34859668

RESUMO

Dendrimers, which are highly branched polymers and regarded as huge single molecules, are interesting substances from the aspect of not only polymer chemistry but also molecular chemistry. Various applications in materials science and life science have been investigated by taking advantage of the radially layered structures and intramolecular nanospaces of dendrimers. Most dendrimers have flexible structures that originate from their organic chains which contain many sp3-type atoms, while relatively rigid dendrimers composed only of sp2-type atoms have rarely been reported. It has been recently clarified that such rigid dendrimers exhibit a specific aromatic property not found in other materials. Dendritic phenylazomethines (DPAs), as one of the rigid dendrimers, have only sp2-type C and N atoms and possess a radially branched π-conjugation system in their own macromolecular chains. Such geometric and electronic structures heighten the electron density at the core of the dendrimer and induce an intramolecular potential gradient, which affords unique reactivities that lead to extraordinary functions. This unique property of the rigid dendrimers can be regarded as a new atypical electronic state based on radial aromatic chains not found in conventional aromatic compounds containing spherical aromaticity, Möbius aromaticity, metal aromaticity, and conductive polymers. Therefore, this as-yet-unknown characteristic is expected to contribute to the further development of fundamental and materials chemistry.In this Account, we highlight the rigid DPA dendrimers and their peculiar atomically precise and selective assembly behaviors that originate from the radial aromatic chains. One of the most noteworthy attainments based on the radial aromatic chains is the precise synthesis of a multimetallic multinuclear complex of a dendrimer containing a total of 13 elements. Next, we describe the electrochemical and catalytic functionalization of such multinuclear dendrimer complexes and the construction of supramolecular nanoarchitectures by the polymerization of DPAs. These complexes exhibit encapsulation-release switching of guests and additive-free catalytic ability similar to proteins and enzymes. Such selective and accurate control of the intramolecular assembly of guests and the intermolecular arrangement of hosts realized by the radial aromatic chains of dendrimers will enable supramolecular chemistry and biochemistry to be linked from a new aspect. In addition, the multimetallic multinuclear complexes of dendrimers afford a novel approach to precisely synthesize sub-nanoparticles with ultrasmall particle sizes (1 nm) that have been technically difficult to obtain by conventional nanotechnology. We discuss the method for the synthesis of these sub-nanoparticles with well-controlled atomicity and composition using DPA complexes as a template and recent advances to reveal their specific physical and chemical properties. These results suggest that the unique electronic states induced in such radial aromatics could play an important role in the development of next-generation chemistry.

7.
Nat Rev Chem ; 5(5): 338-347, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-37117837

RESUMO

For decades, chemists have explored cluster compounds according to theoretical models that have proved too simplistic to accurately predict cluster properties, stabilities and functions. By incorporating molecular symmetry into existing cluster models, we can better study real polyatomic molecules and have new guidelines for their design. This symmetry-adapted cluster model allows us to discover substances that shatter the conventional notion of clusters. Theoretical predictors will point to the viability of new clusters, whose syntheses can be realized with parallel advances in experimental methods. This Perspective describes these modern experimental and theoretical strategies for cluster design and how they may give rise to new fields in cluster chemistry.

8.
J Am Chem Soc ; 142(45): 19078-19084, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-32897063

RESUMO

Subnanoparticles (SNPs) exhibit unique properties and functions due to their extremely small particle sizes which extend into the quantum scale. Although the synthesis of SNPs requiring precise control of atomicity and composition has not been accomplished, we recently developed an atom-hybridization method (AHM) that realizes such atomic-level control using a macromolecular template. As a next step in the quest for innovative quantum materials, the practical creation of functional subnanomaterials will become a central subject. In this study, we established a new screening technique for functional SNPs by focusing on the simple indium-tin binary system with sequential compositions using the latest AHM. As a result, it was revealed that a thermodynamically unstable indium species was produced only at a certain composition leading to a durable luminescent function. Such a phenomenon in subnanosized substances will play an important role in the development of the as-yet-unknown field of quantum materials.

9.
Angew Chem Int Ed Engl ; 59(51): 23051-23055, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32844511

RESUMO

The science of particles on a sub-nanometer (ca. 1 nm) scale has attracted worldwide attention. However, it has remained unexplored because of the technical difficulty in the precise synthesis of sub-nanoparticles (SNPs). We recently developed the "atom-hybridization method (AHM)" for the precise synthesis of SNPs by using a suitably designed macromolecule as a template. We have now investigated the chemical reactivity of alloy SNPs obtained by the AHM. Focusing on the coinage metal elements, we systematically evaluated the oxidation reaction of an olefin catalyzed by these SNPs. The SNPs showed high catalytic performance even under milder conditions than those used with conventional catalysts. Additionally, the hybridization of multiple elements enhanced the turnover frequency and the selectivity for the formation of the hydroperoxide derivative. We discuss the unique quantum-sized catalysts providing generally unstable hydroperoxides from the viewpoint of the miniaturization and hybridization of materials.

10.
Adv Mater ; 32(14): e1907167, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32080936

RESUMO

Superatoms have been investigated due to their possible substitution for other elements. The solution-phase synthesis of superatoms has attracted attention to realize the availability of superatoms. However, the previous approach is basically limited to the formation of a single cluster. Here, superatoms are investigated and the number of valence electrons in these superatoms is changed by designing the number of gallium atoms present. Based on the dendrimer template method, clusters consisting of 3, 12, 13, and other numbers of atoms have been synthesized. The halogen-like superatomic nature of Ga13 is structurally and electrochemically observed as completely different to the other clusters. The gallium clusters of 13 and 3 atoms, which can fill the 2P and 1P superatomic orbitals, respectively, exhibit different reactivities. The 3-atom gallium cluster is suggested as being reduced to Ga3 H2 - due to the lower shift of energy levels in the unoccupied orbitals. The results for these gallium clusters provide candidates for superatoms.

11.
Nat Commun ; 10(1): 3727, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427588

RESUMO

The periodic table has always contributed to the discovery of a number of elements. Is there no such principle for larger-scale substances than atoms? Many stable substances such as clusters have been predicted based on the jellium model, which usually assumes that their structures are approximately spherical. The jellium model is effective to explain subglobular clusters such as icosahedral clusters. To broaden the scope of this model, we propose the symmetry-adapted orbital model, which explicitly takes into account the level splittings of the electronic orbitals due to lower structural symmetries. This refinement indicates the possibility of an abundance of stable clusters with various shapes that obey a certain periodicity. Many existing substances are also governed by the same rule. Consequently, all substances with the same symmetry can be unified into a periodic framework in analogy to the periodic table of elements, which will act as a useful compass to find missing substances.

12.
Angew Chem Int Ed Engl ; 58(4): 1002-1006, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30430729

RESUMO

Subnanocatalysts (SNCs) containing various noble metals (Cu, Ru, Rh, Pd, or Pt) with sizes of approximately 1 nm were synthesized using dendritic poly(phenylazomethine)s as a macromolecular template. These materials exhibit high catalytic performance during toluene oxidation without the use of harmful solvents or explosive oxidants, resulting in the formation of valuable organic products, including benzoic acid as the major product. In particular, Pt19 SNC with a narrow particle size distribution exhibits extraordinary catalytic activity, with a turnover frequency of 3238 atom-1 h-1 , which is 1700 times greater than that obtained by commercial Pt/C catalysts.

13.
Nat Commun ; 9(1): 3873, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250189

RESUMO

The chemistry of metal clusters on the sub-nanometer scale is not yet well understood because metal clusters, especially multimetallic clusters, are difficult to synthesize with control over size and composition. The template synthesis of multimetallic sub-nanoclusters is achieved using a phenylazomethine dendrimer as a macromolecular template. Its intramolecular potential gradient allows the precise uptake of metal precursor complexes containing up to eight elements on the template. The usefulness of this method is demonstrated by synthesizing multimetallic sub-nanoclusters composed of five elements (Ga1In1Au3Bi2Sn6). The size and composition of this cluster can be precisely controlled and the metals involved are alloyed with each other. This approach provides the ability to easily blend different metals in various combinations to create new materials on the sub-nanometer scale, which will lead to the development of a new area in the field of chemistry.

14.
Nat Commun ; 9(1): 3758, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30217977

RESUMO

Spherical atoms have the highest geometrical symmetry. Due to this symmetry, atomic orbitals are highly degenerate, leading to closed-shell stability and magnetism. No substances with greater degrees of degeneracy are known, due to geometrical limitations. We now propose that realistic magnesium, zinc, and cadmium clusters having a specific tetrahedral framework possess anomalous higher-fold degeneracies than spherical symmetry. Combining density functional theory calculations with simple tight-binding models, we demonstrate that these degeneracies can be attributed to dynamical symmetry. The degeneracy condition is fully identified as an elegant mathematical sequence involving interatomic parameters. The introduction of dynamical symmetry will lead to the discovery of a novel category of substances with super-degenerate orbitals.

15.
Chem Commun (Camb) ; 53(70): 9805-9808, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28820190

RESUMO

The titled complex exhibits multi-functional luminochromism in the solid state, despite its simple chemical structure. The complex shows solid-state vapochromism and mechanochromism. The polymer analogue of the complex undergoes solvatochromism and thermochromism.

16.
J Am Chem Soc ; 139(15): 5359-5366, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28320204

RESUMO

Photoluminescent coordination nanosheets (CONASHs) comprising three-way terpyridine (tpy) ligands and zinc(II) ions are created by allowing the two constitutive components to react with each other at a liquid/liquid interface. Taking advantage of bottom-up CONASHs, or flexibility in organic ligand design and coordination modes, we demonstrate the diversity of the tpy-zinc(II) CONASH in structures and photofunctions. A combination of 1,3,5-tris[4-(4'-2,2':6',2″-terpyridyl)phenyl]benzene (1) and Zn(BF4)2 affords a cationic CONASH featuring the bis(tpy)Zn complex motif (1-Zn), while substitution of the zinc source with ZnSO4 realizes a charge-neutral CONASH with the [Zn2(µ-O2SO2)2(tpy)2] motif [1-Zn2(SO4)2]. The difference stems from the use of noncoordinating (BF4-) or coordinating and bridging (SO42-) anions. The change in the coordination mode alters the luminescence (480 nm blue in 1-Zn; 552 nm yellow in 1-Zn2(SO4)2). The photophysical property also differs in that 1-Zn2(SO4)2 shows solvatoluminochromism, whereas 1-Zn does not. Photoluminescence is also modulated by the tpy ligand structure. 2-Zn contains triarylamine-centered terpyridine ligand 2 and features the bis(tpy)Zn motif; its emission is substantially red-shifted (590 nm orange) compared with that of 1-Zn. CONASHs 1-Zn and 2-Zn possess cationic nanosheet frameworks with counteranions (BF4-), and thereby feature anion exchange capacities. Indeed, anionic xanthene dyes were taken up by these nanosheets, which undergo quasi-quantitative exciton migration from the host CONASH. This series of studies shows tpy-zinc(II) CONASHs as promising potential photofunctional nanomaterials.

17.
Chem Commun (Camb) ; 53(26): 3657-3660, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28144656

RESUMO

The authors create a zinc(ii) complex featuring a simple chemical structure but multi-functional luminochromism. Reversible dissociation/association between the zinc center and the terpyridine ligand plays a key role in the multi-functional luminochromism.

18.
ACS Appl Mater Interfaces ; 8(11): 7522-8, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26928385

RESUMO

Two types of +3-charged subporphyrin derivatives with m- and p-methylpyridinium as the meso-aryl substituents were designed and synthesized. Their photophysical properties with and without anionic saponite clay were investigated. These cationic subporphyrins were suitably designed for adsorption on the saponite nanosheet surface with their photoactivity. Absorption and emission spectra of these subporphyrin-saponite complexes exhibited strong bathochromic shifts due to the flattening of the molecules on the nanosheet. This behavior was observed as drastic visual changes in their luminescence colors. Additionally, aggregation behaviors were not observed in the saponite complexes even at high dye loading levels for both subporphyrins. Moreover, under such condition, their fluorescence properties on the saponite surface were not only maintained but also enhanced without unexpected deactivations despite the dye molecules are densely introduced on the solid surface. These findings are beneficial for applications of the dye-clay complexes to photofunctional materials such as strongly luminescent materials, highly sensitive clay sensors and artificial photosynthesis systems.

19.
Langmuir ; 32(12): 2920-7, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26963843

RESUMO

Three coumarin derivatives (7-propoxy coumarin, coumarin-480, and coumarin-540a, 2, 3, and 4, respectively) having different absorption and emission spectra were encapsulated within a water-soluble organic capsule formed by the two positively charged ammonium-functionalized cavitand octaamine (OAm, 1). Guests 2, 3, and 4 absorb in ultraviolet, violet, and blue regions and emit in violet, blue, and green regions, respectively. Energy transfer between the above three coumarin@(OAm)2 complexes assembled on the surface of a saponite clay nanosheet was investigated by steady-state and time-resolved emission techniques. Judging from their emission and excitation spectra, we concluded that the singlet-singlet energy transfer proceeded from 2 to 3, from 2 to 4, and from 3 to 4 when OAm-encapsulated 2, 3, and 4 were aligned on a clay surface as two-component systems. Under such conditions, the energy transfer efficiencies for the paths 2* to 3, 2* to 4, and 3* to 4 were calculated to be 33, 36, and 50% in two-component systems. When all three coumarins were assembled on the surface and 2 was excited, the energy transfer efficiencies for the paths 2* to 3, 2* to 4, and 3* to 4 were estimated to be 32, 34, and 33%. A comparison of energy transfer efficiencies of the two-component and three-component systems revealed that excitation of 2 leads to emission from 4. Successful merging of supramolecular chemistry and surface chemistry by demonstrating novel multi-step energy transfer in a three-component dye encapsulated system on a clay surface opens up newer opportunities for exploring such systems in an artificial light-harvesting phenomenon.


Assuntos
Silicatos de Alumínio/química , Corantes/química , Cumarínicos/química , Nanoestruturas/química , Adsorção , Transferência de Energia , Éteres Cíclicos/química , Luz , Processos Fotoquímicos , Resorcinóis/química
20.
Angew Chem Int Ed Engl ; 55(4): 1377-81, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26663591

RESUMO

Heteroleptic zinc(II) complexes synthesized using achiral dipyrrinato and chiral bis(oxazoline) ligands show bright fluorescence with quantum efficiencies of up to 0.70. The fluorescence originates from the (1)π-π* photoexcited state localized exclusively on the dipyrrinato ligand. Furthermore, the luminescence is circularly polarized despite the achirality of the dipyrrinato ligand. Single-crystal X-ray structure analysis discloses that the chiral bis(oxazoline) ligand undergoes intramolecular π-π stacking with the dipyrrinato ligand, inducing axial chirality in the dipyrrinato moiety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...